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Extending the Diatomic FTIR Experiment:
A Computational Exercise To Calculate Potential
Energy Curves

Osman Sorkhabi,* William M. Jackson, and Iraj Daizadeh*
Department of Chemistry, University of California, Davis, CA  95616

A standard experiment in undergraduate physical
chemistry courses is the ro-vibrational study of diatomics
or other small molecules (1–3). The ultimate aim of these
experiments is to develop an understanding of how to obtain
molecular constants from an observed spectrum. These con-
stants allow for the generation of potential energy curves
or for calculation of spectra. The potential energy curves are
related to the forces that govern the interaction between in-
dividual nuclei, and the calculated spectra provide insight into
the population of states and their corresponding energies.

Here we propose an experiment for undergraduate
physical chemistry courses for calculating potential energy
curves for a series of diatomic molecules using the Morse
function (1–3), a modified Morse function also known as the
Hulburt–Hirschfelder (HH) function (4), and the Rydberg–
Klein–Rees (RKR) (5) method from the experimentally
determined molecular constants or from fundamental fre-
quencies. This exercise will serve as an extension to the
standard IR absorption experiments and will tie together
experimental and computational techniques, providing stu-
dents with a more complete picture of the system under
study. Furthermore, this exercise will not only give students
a better understanding of the fundamental concepts of spec-
troscopy and quantum mechanics, but it will also expose
them to computational methods. The use of a computer code
(Basic, Fortran, C, etc.) and/or a spreadsheet software is en-
couraged in this project.

Potential Energy Curves

For a diatomic molecule, one can construct a potential
energy curve by using the Morse function, which can be
written as

VM (x) = De[1 – e{ax]2 (1)

where De is the depth of the well and is known as the disso-
ciation energy of the molecule, x = r – re , and re is the equi-
librium internuclear separation. The constant a gives a
measure of the curvature of the function and is given by

   
a = ωe

2π2cµ
Deh

1/2

(2)

where µ is the reduced mass, ωe is the fundamental fre-
quency, and c and h are the speed of light and Planck’s con-
stant, respectively. Substitution of the Morse function into
the time-independent Schrödinger wave equation yields vi-
brational energy levels in better agreement with experi-
ment than the harmonic oscillator predictions. Equation 1
is not, however, accurate in the sense that it fails to ap-
proach De rapidly enough. Hulburt and Hirschfelder (4)
have suggested the following modification to the Morse
function:

VHH(x) = De[(1 – e {ax)2(1 + abx )] (3)

Here, a is as defined by eq 2, and b and c as follows:
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αe is the rotational-vibrational interaction constant, and Be
is the rotational constant. Note that c and b are unitless
and that c in eqs 4 and 5 is not the speed of light. To obtain
eqs 3–5, we modified the expressions found in refs 4 and 9.1
Using eqs 4 and 5, we were able to generate c and b for sev-
eral diatomic molecules. The results are shown in Table 1
along with some other molecular constants. It should be
noted that many discrepancies were found between data
reported in ref 4 and our calculated values for c and b.

Using the data in Table 1 along with eqs 1–5, one can
calculate the Morse function, VM (x), and the Hulburt–
Hirschfelder function, VHH (x), over the full range of r for the
given diatomic molecules. However, the above calculations
need not be limited to these particular molecules. Any di-
atomic molecule for which the molecular constants are
available can be subject to this type of analysis. A plot of
VM(x) or VHH(x) versus r constitutes a potential energy curve
for that particular molecule.

Both the Morse and the Hulburt–Hirschfelder methods
assume an analytical, yet empirical, expression for the poten-
tial energy function. In contrast to this, a method formulated
by Rydberg and Klein allows one to construct the potential
energy curve for any diatomic molecule, point for point, from
its molecular constants or fundamental frequencies (7–9).

The Rydberg–Klein method involves calculating clas-
sical turning points as a function of total energy U until
the entire potential energy curve is constructed. When U is
less than or equal to the potential energy, V∞ , the displace-
ment from the equilibrium bond length, re , will be confined
to a region between r{ and r+, where

  r+ = f
g + f 2

1/2

+ f (6)

   r{ = f
g + f 2

1/2

– f (7)

Here, f and g are defined as

   f = h
8π2cµωexe

1/2

ln Q (8)
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g =
2π2cµ

h ωexe
3

1/2

αe 4ωexeU
1/2

+ 2ωexeBe –αeωe ln Q (9)

where

   

Q =
we

2 – 4ωexe U
1/2

we – 4ωexe U
1/2

Equations 8 and 9 are the analytical solutions obtained
by Rees for a quadratic in ν (5) (and thus called second-order
RKR). With eqs 6–9, the classical turning points can be calcu-
lated over a large range of U. For the RKR method, U need
not be quantized and can take on any positive value. A plot
of  U versus r+ and r{ yields the potential energy curve.

Results of Calculations

Figure 1 shows the IR absorption spectrum of HCl re-
corded on a Mattson Galaxy Series FTIR 3000 spectrom-
eter with a resolution of 0.1 cm{1. Owing to the high resolution
of this spectrometer, transitions due to H35Cl and H37Cl are
resolved and can be seen in Figure 1. We also observed tran-
sitions due to D35Cl and D37Cl, but these are not shown
here. In the following analysis, we restrict our attention to
H35Cl. From the spectrum shown in Figure 1 we have ex-
tracted line positions, νP and νR, and frequency differences,

∆ν(m), for the P (∆J = {1) and R (∆J = +1) branches, respec-
tively. Using these line positions along with ∆ν(m)’s, one can
calculate ωe, Be, and αe for HCl as follows. The energies for
the R and P branches are

  νR = ν0 + (2Be – 3αe) + (2Be – 4αe)J″ – αe J″2 J″ = 0, 1, 2, …

  νP = ν0 – (2Be – 2αe)J″ – αeJ″2 J″ = 1, 2, 3, …

respectively, where ν0, the frequency for the forbidden transi-
tion from ν″ = 0, J″ = 0 to v′ = 1, J′ = 0, is given by ν0 = ωe – 2ωexe.
Now, if we make the substitutions mR = J″ +1 for the R
branch and mP = { J″ for the P branch, the frequency between
adjacent lines becomes

∆ν(mi) = ν(mi + 1) – ν(mi) = (2Be – 3αe) – 2αemi (13)

where i = R or P. The values of Be and αe can be determined
by plotting ∆ν(mi) versus mi. Table 2 lists calculated values
for νP, νR, ∆νP, ∆νR for J″ = 0 to 12 obtained from Figure 1.
One can also obtain the value of ν0 and ωe using the above
equations, provided that ωexe is known. This is not the most
common or accurate computational method for fitting mo-
lecular constants, but we used this approach because of its
simplicity. The reader is referred to ref 11 for further infor-
mation on different techniques of fitting molecular constants.
For reference, we have calculated values for ωe, αe, and Be
from the spectrum and they appear, along with literature
values (9), in Table 3.

Using our calculated molecular constants, we have con-
structed potential energy curves for HCl using the Morse,
HH, and RKR methods as shown in Figure 2. Using data
near the potential energy minimum to generate the entire

Figure 1. FTIR ro-vibrational spectrum of HCl. Notice that the iso-
tope effect can be seen.

(snoitisoPeniLderusaeM.2elbaT ννννν ycneuqerFdna)
(secnereffiD ν∆ν∆ν∆ν∆ν∆ HfosehcnarBRdnaProf) 53 lC

J ≤ mP
ν∆ P

νP
mc( {1) mR

ν∆ R
νR
mc( {1)

0 0 – – 1 – 59.5092

1 {1 – 79.4682 2 77.91 27.5292

2 {2 54.12 25.3482 3 40.91 67.4492

3 {3 81.22 43.1282 4 23.81 80.3692

4 {4 66.22 86.8972 5 48.71 29.0892

5 {5 41.32 45.5772 6 88.61 8.7992

6 {6 26.32 29.1572 7 93.61 91.4103

7 {7 53.42 75.7272 8 76.51 68.9203

8 {8 38.42 47.2072 9 49.41 8.4403

9 {9 70.52 76.7762 01 32.41 30.9503

01 { 01 97.52 88.1562 11 47.31 77.2703

11 { 11 82.62 6.5262 21 77.21 45.5803

21 { 21 57.62 58.8952 31 50.21 95.7903

rofseulaVdetaluclaCdnastnatsnoCraluceloM.1elbaT c dna b seluceloMcimotaiDemoSrof

eluceloM
ωe ωexe Be

αe re De c b
mc( {1) mc( {1) mc( {1) mc( {1) )Å( mc( {1)

N2 16.9532 544.41 700.2 810.0 590.1 837,06 0481.0 070.1

H 97 rB 76.9462 12.54 174.8 622.0 414.1 476,13 3560.0 664.1

D 53 lC 361.5412 5281.72 8844.5 92311.0 6472.1 241,63 – a – a

ON 25.6091 405.41 907.1 3810.0 051.1 446,34 0341.0 290.1

OC 2.8612 40.31 0139.1 44710.0 4821.1 048,47 7650.0 865.1
a Values of c and b for D35Cl are not known, nor were they calculated.
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potential energy curve will unavoidably introduce error due
to the function becoming more and more approximate at
points far from the equilibrium bond distance. In a future
study, we will explicitly address this issue by doing over-
tone IR experiments to get the necessary molecular param-
eters. Nonetheless, all three methods resemble, very accu-
rately, the “true” potential energy curve near re. The Morse
curve, however, approaches the asymptotic limit, De, slower
that the HH energy curve. The dissociation energy predicted
by the RKR method given above can be written as

   De =
ωe

2

4ωexe
(14)

Using this expression for De, the Morse and the RKR meth-
ods are mathematically equivalent using second-order RKR.
However, eq 14 does not yield the true dissociation energy
and was not used in any of the our calculations. One more
point should be made regarding the results of the RKR
method. Equations 8 and 9 fail to improve on the results of
the Morse potential energy curve because it is a quadratic
solution. More accurate results can be obtained by using
more sophisticated solutions of the Rydberg–Klein formu-
lation (5, 13). Finally, we would like to mention that these
methods are not limited to ground electronic states but can
be applied to excited states as well.

Conclusions

To our knowledge, no other experiment incorporates
calculations of potential energy curves. The uniqueness of
this approach is that it ties computational techniques with
a standard physical chemistry experiment. We believe that
extending the IR HCl experiment will allow students to
relate theory to experiment and gain greater insight into
the system under study.

The above exercise was assigned as a final project to
an upper division undergraduate class entitled Molecular
Structure and Spectroscopy at the University of California–
Davis campus. The students were asked to:

• calculate molecular constants from experimentally
obtained spectra,

• compare these values with literature, and
• generate potential energy curves for the given diatomic

molecule using the Morse, HH, and RKR methods.

The class performed the calculations both from spread-
sheet software and using a C code.2 The results were very

encouraging. However, since the dissociation energy can be
defined by eq 14, the students seemed perplexed as to why
the Morse and the RKR quadratic formulation gave the
same result. Overall, students performed very well on this
project and with enthusiasm.
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Notes

1. A mistake was found for eq 5 from the original refs 4 and
11. This error was addressed in an erratum presented in ref 14.

2. The C code used can be obtained from I. Daizadeh via email:
daizadeh@indigo.ucdavis.edu.
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Figure 2. Potential energy curve from the observed band-spec-
troscopic data for HCl using the Rydberg–Klein–Rees, Morse, and
Hulburt–Hirschfelder methods.

HrofataDdetaluclaC.3elbaT 53 lC

mreT a kroWsihT b eulaV.tiL c

(9 )
ωe mc( {1) 47.9892 ± 32.0 649.0992
αe mc( {1) 882.0 ± 400.0 81703.0

Be mc( {1) 55.01 ± 40.0 14395.01
ωe xe mc( {1) – 6818.25

c 9930.0 3610.0

b 567.1 0909.4
a The molecular constants are for the naturally abundant

species, not for isotopic averages.
b Errors represent the 95% confidence interval.
c Values for c and b were calculated using the molecular

constants reported in ref 9.


