## **DOSY (Diffusion Ordered Spectroscopy)**

## Background

In DOSY, the spins are gradient-encoded by their z-position in the NMR tube. After a brief diffusion time ( $\Delta$ ) the spins are decoded. If a molecule remains within the same slice of the NMR tube, it will appear at full intensity, but if it diffuses to another slice, its signal will be attenuated as a function of the distance it has diffused. A simplified pulse sequence is shown below:



The peak attenuation is controlled by three variables. Typically, the gradient power (G) is varied over the course of the 2D experiment. The diffusion delay ( $\Delta$ ) and gradient length ( $\delta$ ), however, must be optimized.

Reducing the Spectral Window

- 1. Insert a sample, lock, shim, and record a normal <sup>1</sup>H spectrum.
- 2. Type *iexpno* to move to a new EXPNO. Expand the spectrum so that all the peaks are on the screen, and click the <u>4</u> icon to adjust SW and O1. Reduce TD to 16K and SI to 8K.
- 3. Acquire another spectrum to check that the parameters are good.

## Optimizing the DOSY Parameters:

- 4. In the ASED window, set GPNAM6 and GPNAM7 both to "SMSQ10.100". Set PULPRG = stebpgp1s1d,\* GPz6 = 2 (the percentage of the full gradient to use for this spectrum), GPz7 = -17.13 (homospoil), D20 = 0.1 s ( $\Delta$ -value), P30 = 1800  $\mu$ s ( $\delta$ -value). Turn the spinner off ("ro off").
- 5. Obtain a spectrum (rga / zg / efp / apk ).
- 6. Move to a new expno (*iexpno*), change GPz6 to 95 percent of the full gradient, and acquire another spectrum.
- 7. Compare the two spectra: *mdisp* then *re*  $\underline{n}$ , where  $\underline{n}$  is the expno from step 5 (eg, "re 3") If the intensity of the second spectrum is roughly 1/50 that of the first, all is good. If not, adjust D20 ( $\Delta$ ) or P30 ( $\delta$ ) until they are.

Running the DOSY

- 8. Change the pulse program to stebpgp1s.\* Click the  $1_{23}^{\downarrow}$  icon under the AcquPars tab to change the data-set to 2D. Increase NS and DS (typically 32 + 4). Set TD(F2,F1) = (16k, *n*), where *n* is the number of F1 slices desired (ie, number of G values to use, typically 16). Set SI(F2,F1) to (8k, *n*), and FnMOD = QF.
- 9. Type *dosy*, which will ask about additional parameters. Set the Gradient Ramp using the minimum and maximum values you used in steps 4 and 6 (2% and 95%). Set the number of points to the same *n* value used above (16). A linear ramp is most common. Press OK and step back.

## Processing the DOSY Data

(see below if you want numerical diffusion coefficients, rather than a 2-D spectrum)

<sup>\*</sup> On the new TOPSPIN, this generates a "GPNAM6= Gradient function file name is empty" error. Please let me know if the things work with the "SMSQ10.100" change.

- 10. Set PhMod(F2,F1) to (pk, no). Type *setdiffparm* to transfer key parameters, andXF2 to transform the data in F2.
- 11. If necessary, phase the data:
  - a. Enter phase mode by typing .*ph* .
  - b. Right-click on peaks of interest and "add" them.
  - c. Click the "Phase Rows button ( $\stackrel{R}{\longleftrightarrow}$ )

  - e. check by viewing with the  $\wedge^{\wedge}$  button).
- 13. Process the frequency *vs* time data using DOSY2D, to obtain a frequency *vs* diffusion-coefficient plot.
- 14. View slices across F1 through the "Slice" / "interactive" command: click the ⊥⊥⊥↓ icon. The slices may be saved to a procno by right-clicking and choosing "extract".
- **Obtaining Numerical Diffusion Coefficients**

The data may be explicitly regressed and printed as a report, rather than graphically. This follows the same principle used for obtaining T1 and T2 values.

- 10'. Set PhMod(F2,F1) to (pk, no).
- 11'. XF2 to transform the data.
- 12'. From the top buttons, choose Analyze : Dynamics : T1/T2. Follow the top row of buttons:
  - a. Use the FID button to extract a slice from your data to phase. Either the FID or the spectrum is fine. The first slice (default) is fine. Phase the data ("apk").
  - b. Use the Peaks/Ranges button to define the ranges of the spectrum to regress. Integrate the spectrum by dragging across the peaks, then export the data back to the T1/T2 routine ( $\mathbb{T}_A$ -button; export to Relaxation Module).
  - c. Use the Relaxation button to regress the peak intensity *vs* τ data. Click the check-box icon, and verify that the Function Type is "VARGRAD". Press ⊗ to calculate T1 for all peaks. The + and buttons will allow you to change which peak the plot displays data for.

You may need to delete the last data point or two (  $\bigcirc$  -button, then right-click on the peak). In this case, use the  $\bigcirc$  or  $\bigcirc$  button to recalculate the fit.

If only a single point shows up for a spectrum, try switching between "FID" and "Area"